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1

INTRODUCTION

The quality assurance and quality control (QA/QC) procedures described in other chapters of
this volume are designed to ensure that the appropriate methods and data are used, that errors
in calculations or data transcriptions are minimized, and that documentation is adequate to
reconstruct the estimates. It is important to recognize that the resulting quality of the
emission estimates is only partly determined by adherence to a good QA program. The
quality of the emission estimates is also determined by the uncertainty inherent in the
estimates.

This chapter deals with the determination and evaluation of the uncertainty in emission
estimates and the methodology available to do this. The goal is always to reduce
uncertainty. To do so, the inventory preparer must first know the sources of bias and
imprecision in the estimates; Section 2 discusses the sources of uncertainty and gives specific
examples. The next step in certifying the emissions inventory is to conduct a qualitative
assessment of the sources of uncertainty in the inventory. Section 3 provides an example of
how this can be done. The third step is to develop subjective quality indicators for the
source categories; Section 4 describes alternative approaches that produce subjective quality
indicators. Finally, Section 5 describes several approaches for quantitative uncertainty
analysis, arranged in order of increasing complexity.

The intended uses of the emissions data should be considered before spending significant
resources on quantifying the uncertainty and reducing it. For example, if the inventory for a
point source is being used to show compliance with an emissions limit, the relative accuracy
is usually part of the reporting requirements. The uncertainty associated with the estimate is
low.

On the other hand, a national inventory to identify and rank the relative importance of
sources of a specific hazardous air pollutant (HAP) may not be as concerned with the
uncertainty of specific estimates. This is especially true of smaller emissions sources. If an
estimate is highly uncertain, but at worst represents only 1 percent of all the emissions,
accurately quantifying the uncertainty is probably not a high priority. However, a source that
is insignificant at a national level can be very important at a local level. When viewed from
the local community’s perspective, high uncertainty in the estimated emissions may be
unacceptable.

EIIP Volume VI 4.1-1



CHAPTER 4 - EVALUATING UNCERTAINTY 7/12/96

1.1 BACKGROUND

As discussed in Chapter 2 of this volume, the desired quality of an inventory is a function of
the intended end use. If a Level IV inventory is being prepared, the users must be willing to
accept that the estimates are not necessarily of the best possible quality, whereas a Level I
inventory implies the highest possible data quality.

It is not always possible to achieve the desired level of quality. In some instances, the state-
of-the-science may not be sufficient to provide the level of detail desired. In other situations,
unforeseen problems (e.g., equipment failure, survey responses not as high as expected,
activity data not available) may be encountered in the process of preparing the estimates. In
any event, an important step in preparing an emissions inventory is to "qualify the data."
This term means to provide an assessment of how closely the desired level of quality, or data
quality objective (DQO), is met by the inventory preparer. Ideally, the target data quality
can be evaluated using a quantitative data quality indicator (DQI).

When discussing the quality of an estimate, the term "uncertainty" is often used as an
indicator of quality, rather than "accuracy" because there is no reasonable or practical way to
determine to emission values for comparison. Confidence in an estimate is generally
determined by our perception of the reliability of the underlying data and model used to
generate the emissions estimate. For example, an annual boiler nitrogen oxides (NOx)
emission estimate generated using continuous emission monitor (CEM) data is generally held
to be more reliable (less uncertain) than an estimate based on fuel consumption and an
accepted emission factor. However, this logic implicitly assumes that the CEM is maintained
properly, that QA and calibration procedures are rigorously followed, and that the data
capture is near 100 percent. So, assuming that appropriate QA procedures are followed in
both cases, the CEM estimate is assumed to be of higher quality (i.e., more reliable and less
uncertain) than the estimate based on an emission factor.

Calculating the range, confidence interval, or other error bounds for an emission estimate is a
very important tool for assessing the uncertainty of the estimate. However, these statistics
are not complete measures of quality because there may be systematic errors (biases)
associated with the emission estimate that are not bounded by the range or confidence
interval estimates. In addition, uncertainty is due to many causes, one of which is the
inherent variability in the process or processes that cause the emissions. Even if all other
sources of uncertainty were removed, the variability remains. Because some processes are
more variable than others, some will always have larger error bounds than others. That does
not mean that the estimates are of lower quality. It does mean that we do not have as much
confidence in our ability to predict the emissions at a particular point in time, but that we
can confidently predict a range.

EIIP Volume VI4.1-2
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Emission inventory development and uncertainty analysis should be an iterative process.
Once estimates of uncertainty are developed, the inventory preparer should review the
inventory and target the significant sources with the largest uncertainty for more research.
The objective of this iterative process is a minimization of overall uncertainty in the
inventory. Several factors make this process difficult to implement:

Data are not available (and not readily measurable) to quantify the uncertainty;

The available data are insufficient to meet the data input needs of the
statistical or numerical methods to be used to estimate uncertainty; and

Reducing the uncertainty requires more resources (i.e., money and time) than
are available.

The solutions to the second and third problems require the expenditure of resources that may
not be available. However, the Emission Inventory Improvement Program (EIIP) has
developed recommendations for methods to be used to develop better uncertainty estimates if
the necessary resources are available. The EIIP recommendations for implementing
uncertainty analyses are presented in the next section.

1.2 UNCERTAINTY ANALYSIS

The first step towards reducing the uncertainty associated with emission estimates is to
understand and quantify the various sources of variability and inaccuracies in the data used to
estimate the emissions. This analysis should include an assessment of both bias and
imprecision in the estimates. When identified, bias should be eliminated while imprecision
should be minimized. The remaining sources of uncertainty in the inventory should be
identified and quantified if possible.

The initial task in any emissions uncertainty analysis is the definition of the analysis
methodology to be used to estimate emissions uncertainty. Table 4.1-1 presents a list of
eight general types of analyses that have been used or are currently being used to evaluate
emissions inventory uncertainty. A brief overview of each general method, with references,
is given in Table 4.1-1. Additional discussion and examples of each method are described in
Sections 3 through 5 of this chapter. The inventory specialist must be aware that each of the
methods in Table 4.1-1 may provide different estimates of

EIIP Volume VI 4.1-3
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TABLE 4.1-1

OVERVIEW OF METHODS USED TO ESTIMATE EMISSIONS UNCERTAINTY

Methodology References Description

Approximate
Level of
Efforta

Qualitative
Discussion

Steiner et al., 1994 Sources of uncertainty are listed and
discussed. General direction of bias, and
relative magnitude of imprecision are
given if known.

<100 hrs

Subjective Data
Quality Ratings

U.S. EPA, 1995
Saeger, 1994

Subjective rankings based on professional
judgement are assigned to each emission
factor or parameter.

<100 hrs

Data Attribute
Rating System
(DARS)

Beck et al., 1994 Numerical values representing relative
uncertainty are assigned through objective
methods.

<500 hrs

Expert
Estimation
Method

Linstene and Turoff, 1975
SCAQMD, 1982
Horie, 1988
Horie and Shorpe, 1989

Emission distribution parameters (i.e.,
mean, standard deviation, and distribution
type) are estimated by experts. Simple
analytical and graphical techniques can
then be used to estimate confidence limits
from the assumed distributional data. In
the Delphi method, expert judgement is
used to estimate uncertainty directly.

<500 hrs

Propagation of
Errors Method

Mangat et al., 1984
Benkovitz, 1985
Benkovitz and Oden, 1989
Balentine et al., 1994
Environment Canada, 1994

Emission parameter means and standard
deviations are estimated using expert
judgement, measurements, or other
methods. Standard statistical techniques
of error propagation typically based upon
Taylor’s series expansions are then used
to estimate the composite uncertainty.

<500 hrs

Direct
Simulation
Method

Freeman et al., 1986
Iman and Helton, 1988
Oden and Benkovitz, 1990
Efron and Tibshirani, 1991
Environment Canada, 1994
Gatz and Smith, 1995a
Gatz and Smith, 1995b

Monte Carlo, Latin hypercube, bootstrap
(resampling), and other numerical
methods are used to estimate directly the
central value and confidence intervals of
individual emission estimates. In the
Monte Carlo method, expert judgement is
used to estimate the values of the
distribution parameters prior to
performance of the Monte Carlo
simulation. Other methods require no
such assumptions.

<1,000 hrs

EIIP Volume VI4.1-4
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TABLE 4.1-1

(CONTINUED)

Methodology References Description

Approximate
Level of
Efforta

Direct or
Indirect
Measurement
(Validation)
Methodb

Pierson et al., 1990
Spellicy et al., 1992
Fujita et al., 1992
Peer et al., 1992
Mitchell et al., 1995
Claiborn et al., 1995

Direct or indirect field measurement of
emissions are used to compute emissions
and emissions uncertainty directly.
Methods include direct measurement such
as stack sampling and indirect
measurement such as tracer studies.
These methods also provide data for
validating emission estimates and
emission models.

>1,000 hrs

Receptor
Modeling
(Source
Apportionment)
Methodb

Watson et al., 1984
Lowenthal et al., 1992
Chow et al., 1992
Scheff et al., 1995

Receptor modeling is an independent
means to estimate the relative contribution
of specific source types to observed air
quality measurements. The method works
best for nonreactive pollutants for which
unique emission composition
“fingerprints” exist for all significant
source categories. The method provides a
measure of the relative contribution of
each source type but not absolute
emission estimates.

>1,000 hrs

Inverse Air
Quality
Modeling
Methodb

Hartley and Prinn, 1993
Chang et al., 1993
Chang et al., 1995
Mulholland and Seinfeld,
1995

Air quality simulation models are used in
an inverse, iterative approach to estimate
the emissions that would be required to
produce the observed concentrations
fields.

>1,000 hrs

a The levels shown are a relative level of effort, including data collection. The actual effort will depend upon
the scope of work implemented.

b These methods are described in Chapter 3, Section 9, "Emission Estimation Validation" of this volume. They
can be used to develop estimates of uncertainty as well.
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uncertainty when applied to the same data set. These differences range from slight to
significant. A method should be chosen and applied consistently to the inventory categories.
If different methods are used to develop different source groups, comparisons between the
uncertainty results may not be meaningful. The overall goal of any emissions uncertainty
analysis is likely to be the development of confidence limits about the mean of emission
estimates from each source type analyzed. The significance level assumed for the confidence
limits, generally 90 or 95 percent, is a function of the quality of the input data available and
the use to which the uncertainty estimates will be put. It is up to the analyst for each study
to determine the appropriate significance level for his or her study.

1.3 EIIP RECOMMENDATIONS

The preferred and alternative methods of qualifying emissions inventory data are summarized
in Table 4.1-2. Note that there are two aspects to these recommendations. The first is that
all three elements--qualitative assessment, ranking, and quantitative uncertainty--are included;
the second is that different methods are preferred for completing these three elements.
Inventory preparers are not constrained to the combinations of elements shown in this table;
rather, they should develop a plan for qualifying the data that is most suitable for the specific
situation. The methods shown are the minimum recommended for the level shown.

As discussed above, the lack of necessary data is a significant limitation in the development
of emission inventory uncertainty estimates. For these instances, the EIIP recommends use
of ranking methods. The EIIP preferred ranking method is the Data Attribute Rating System
(DARS). Because of its potential to provide significant information on emissions inventory
uncertainty, the EIIP has focused on the DARS method for further development.

The DARS method addresses four major sources of uncertainty or error in both the emission
factor and the activity data. Numerical scores are assigned based on predefined criteria, and
a composite score is computed to provide an overall indicator of the relative quality of the
estimate. While DARS does address uncertainty in a subjective way (i.e., the higher the
DARS score, the more confidence or certainty we have about the estimate), it does not
quantify the imprecision of the estimate. For this reason, the EIIP strongly encourages the
additional use of quantitative methods to calculate confidence intervals (or other measures of
the dispersion of the estimate).

For many area sources, the preferred method is to conduct a survey of facilities in the
inventory region to gather more accurate activity and emissions data. The value of using this
more resource-intensive approach is shown in Table 4.1-3. This table shows the estimated
emissions for industrial surface coatings in the Houston area. The first two estimates were
calculated using volatile organic compound (VOC) per capita and per employee factors,
respectively, and then using standard speciation profiles to allocate the emissions to

EIIP Volume VI4.1-6
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TABLE 4.1-2

PREFERRED AND ALTERNATIVE METHODS FOR QUALIFYING EMISSION INVENTORY DATA

Qualitative Rankinga Quantitative Uncertainty

Preferred
(Level 1)

Provide a qualitative assessment of uncertainty,
addressing bias and imprecision of key data elements;
indicate direction of bias and relative magnitude of
imprecision where possible. Provide any statistical
measures of data dispersion that are available.

For each source contributing
to the top 90% of emissions,
provide a subjective relative
ranking of the quality of the
estimate.

Quantify the range of the
estimates as a 90% confidence
level for all sources.

Alternative
(Level 1 or 2)

Provide a qualitative assessment of uncertainty,
addressing bias and imprecision of key data elements;
indicate direction of bias and relative magnitude of
imprecision where possible. Provide any statistical
measures of data dispersion that are available.

For each source contributing
to the top 90% of emissions,
provide a subjective relative
ranking of the quality of the
estimate.

Quantify the range of
estimates at the 90%
confidence level for the top 10
sources in the point, area, on-
road mobile, non-road mobile,
and biogenic categories.

Other Methods
(Level 3)

Provide a qualitative assessment of uncertainty,
addressing bias and imprecision of key data elements;
indicate direction of bias and relative magnitude of
imprecision where possible. Provide any statistical
measures of data dispersion that are available.

Rank sources from largest to
smallest; provide subjective
relative ranking for as many
as possible (starting with
largest).

None.

Other Methods
(Level 4)

Provide a qualitative assessment of uncertainty,
addressing bias and imprecision of key data elements;
indicate direction of bias and relative magnitude of
imprecision where possible. Provide any statistical
measures of data dispersion that are available.

None. None.

a The EIIP preferred ranking method is DARS.
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individual chemical species (speciation). The third estimate was based on a survey of

TABLE 4.1-3

COMPARISON OF UNCERTAINTY AND DATA QUALITY FOR THREE ESTIMATION
METHODS FOR INDUSTRIAL SURFACE COATINGS

Method
Emissions of
VOCs (tpy)

Assessment of
Imprecision

DARS
Score

Level of Effort
(hours)

Per Capita 7423 Very higha 0.15 1

Per Employee 589 Higha 0.43 200

Survey 198 ±40%b 0.86 300

a Qualitative assessment.
b 90% confidence interval based on survey data.

Standard Industrial Classification (SIC) codes included in this category. A telephone survey
of 198 facilities was first used to determine what fraction of the surveyed facilities actually
were sources of hazardous air pollutant (HAP) emissions. (Note: this survey was designed
primarily as a survey of organic HAP emissions, but data on total VOCs were also collected.
Only the VOC results are used here as an example.) The total number of facilities (416) in
the SIC group was then multiplied by the survey fraction of emitting sources to give an
estimate of the total number of emitting sources. A subset of 32 sites were then visited and
solvent use data were collected. This information included material safety data sheets
(MSDSs) documenting solvent composition and the total annual volume of solvent. From
this data set, emission factors for each pollutant were developed on a per facility basis, and
used with the estimated number of facilities to estimate VOC emissions in the Houston area.

The estimated VOC emissions as calculated in tons per year (tpy) by each method are given
in Table 4.1-3, along with an analysis of the uncertainty, the DARS scores for each, and an
estimate of the number of labor hours required for each method. As is clearly shown, the
per capita estimate requires very little effort, but produces an estimate of very high
uncertainty. This low-cost estimate is also shown to overestimate emissions by an order of
magnitude for this case.

The second approach requires an intermediate expenditure of time but produces estimates
closer to the best estimate. (For this specific example, however, the estimated emissions
would have been twice as high if the number of employees had not been adjusted using the
phone survey results.) The third approach targeted uncertainty in both the factor and in the
activity data; while considerably more resources were required to generate this estimate, the

EIIP Volume VI4.1-8
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results are dramatic both in the decrease in estimated emissions and in the increase in
quality.

In this example, the higher the quality of the estimate, the lower the emissions. This will not
always be the case; because the per capita and per employee factors are based on national
averages, these factors will over- and underestimate emissions for specific regions (assuming
that the national estimates are not biased in some way). The table does not include an
assessment of possible bias. All methods potentially overestimate emissions (i.e., positive
bias) because they do not account for non-air losses. However, the latter two possibly have a
negative bias in that potential respondents are more likely to decline to answer when theyare
a source than when they are not.

EIIP Volume VI 4.1-9
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2

SOURCES OF UNCERTAINTY IN
EMISSION INVENTORIES

Estimates in emission inventories are nearly always the result of modeling of one form or
another. The simplest emissions modeling method is the use of an emission factor multiplied
by an activity level to approximate emissions. Statistical models (such as regression models)
are a more sophisticated way to achieve the same objective. Or, more complex models such
as the Biogenic Emissions Inventory System (BEIS) or the Mobile Source Emissions Model
MOBILE5a use detailed input data to generate emission estimates or factors. Temporal and
spatial allocation of emissions may require further modeling through the use of statistical
analysis or surrogate variables to distribute the emissions data or underlying activity to a grid
at a specified temporal resolution. In all cases, uncertainty is associated with the
development and adjustment of emission estimates.

Uncertainty in emission estimates is due to a variety of causes. First, there is inherent
variability in the processes producing the emissions. For example, sulfur dioxide (SO2)
emissions from combustion sources fluctuate with the sulfur content of the fuel and the
process load. For other sources, uncertainty results from variation in the environmental
factors that produce the emissions (e.g., biogenic emissions vary with temperature, sunlight
intensity, exposed leaf surface area, and other environmental factors). Other sources of
uncertainty in emission estimates stem from the methods, models, and assumptions used to
fill in our incomplete knowledge about the emission process and allow simplistic estimation
of emissions from highly complex processes. Still other uncertainty comes from the
measurement methods and instruments themselves. Finally, random errors--usually stemming
from human errors or naturally occurring but unforeseeable events--introduce uncertainty.

The termuncertaintycomprises two types of error in estimation: bias and imprecision. A
bias is a consistent difference between a measurement and its true value that is not due to
random chance. In an emissions inventory, bias can result from an emissions estimation
process in which a systematic error occurs because some aspect of the emissions inventory
process is misrepresented or is not taken into account. For example, if the emission factor
for a given source category was developed from a nonrepresentative sample of source types,
the emission factor will produce a biased estimate of emissions. Bias may also result due to
one’s inability to obtain a comprehensive set of measurements for all conditions producing
emissions (i.e., one cannot perform source sampling for all conditions under which the source
may operate). A common example of bias is the use of solvent consumption as a surrogate
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for emissions; if the disposal of waste solvent or other nonair releases are ignored, this
approach consistently overestimates emissions (i.e., positive bias).

In contrast to bias,imprecisionin a parameter is the difference due to random error or
fluctuations between a measurement and its true value. Multiple measurements of the
parameter will differ, but--if the measurements are nonbiased--the measurements will cluster
about the true value of the parameter. This imprecision is caused by sampling error and
human error, as well as by the natural fluctuations in the process being measured. Emissions
data variability results from a number of causes including temporal or spatial fluctuations in
data used to estimate emissions (e.g., the temporal variation in the fuel sulfur content,
heating value, and load for an industrial boiler). In addition, there are inherent differences in
individual emission sources in that no two sources or operations can be exactly identical.

The factors producing uncertainty in emissions data can be separated into three general
classes: variability, parameter uncertainty, and model uncertainty. This system of classifying
uncertainty is based on a discussion by Finkel (1990) of uncertainty in risk assessment. In
the following section, these concepts are applied to the understanding and estimation of
uncertainty in emission estimates.

2.1 VARIABILITY

Variability is inherent in the process that produces emissions. If all other sources of
uncertainty were removed, the inherent variability would still make it impossible to precisely
specify emissions at a certain point in time and space. Some processes have very little
natural variability, others have a lot. There are two major components of the variability that
occur in emissions estimates and the data used to create the emissions estimates. The first
component is the uncertainty introduced by variation from source to source (spatial
uncertainty) and the second component is within source variation (temporal uncertainty).
Table 4.2-1 presents examples of these two sources of variability in emission sources.

Source-to-source differences, such as the vehicle fleet composition between urban areas,
differences in the process operation of two refineries, and differences in the physical
attributes of similar boilers, introduce imprecision into estimates of emissions, emission
factors, and activity data. However, even if all source-to-source uncertainty were eliminated,
there would still be uncertainty in emission estimates resulting from within-source (temporal)
variability. Factors such as the change in equipment operating characteristics with age,
variation in fuels, load fluctuations, and maintenance history all contribute to the variability
of emission estimates for a single source.

An incomplete understanding of the variability in a process can lead to systematic errors in
estimation. For example, emissions due to the application of pesticides are highly variable.
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TABLE 4.2-1

EXAMPLES OF VARIABILITY IN EMISSION SOURCE ESTIMATES

Source of
Variability Examples of Causes Ways to Minimize Effect

Inherent
variability
between
sources

Environmental factors vary spatially (e.g., application rate, soil
moisture, ambient temperature, isolation when determining VOC
emissions from a pesticide application).

Hourly/daily/weekly/seasonal variations in activity (e.g., seasonal
agricultural activities, business day versus weekend activities,
morning/evening commute, batch processing operations).

Annual variability in activity (e.g., heating and cooling demand,
economic growth).

Processes or activities included in the category are not uniform (e.g.,
product formulations vary between manufacturers, product can be
produced using several processes).

Identify environmental factors responsible for
variation in source emissions or activity.

Make sure the averaging time of the emission
factor and activity data are appropriate for
temporal scale of emission estimates desired.

If possible, subdivide category to create more
uniform subcategories.

Inherent
variability
within a
source

Source emissions and effectiveness of emission control systems on a
source can be a function of age and maintenance history of the
source.

Load or production variability of a source (e.g., dry cleaning
emissions depend upon demand that can vary day to day).

Variation in fuel characteristics and raw materials input to an
industrial process (both within-specification and outside-
specification).

Inherent differences in two similar pieces of equipment (i.e., no two
boilers can be exactly the same).

Detail age and maintenance history of all sources.

Document variability in load and production for
the time scale of interest.

Document fuel, raw material, and processing
variability for a given source, particularly in batch
processing operations.

Quantify physical differences between individual
pieces of equipment (e.g., type of emission control
system, modifications to original equipment).
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Rather than being entirely random, however, the emissions are a complex function of the
volatility of the solvents in the pesticide, existing meteorological conditions, the amount and
type of vegetation sprayed, the method of application, and the effect of biological organisms
that can metabolize the pesticide. However, because the form and magnitude of these
complex relationships are unknown, the inventory preparer tends to "be conservative" and
assume that all the solvent applied is emitted. Even when an adjustment is made (e.g.,
assume 90 percent is emitted), that adjustment is often an expert judgement that may still
produce biased results. Because adjustments that are not supported by data introduce an
unknownbias, the tendency is to estimate high so that the direction (if not the magnitude) is
known.

Most sources show some sort of temporal variation because of variability in activity patterns.
For example, residential fuel consumption is higher in the winter than in the summer.
Commercial or industrial activity tends to be greater on weekdays than on weekends. Other
sources have variable emissions due to variability in load, operation, or fuel composition.
For example, municipal solid waste combustors are characterized by spikes in SO2 emissions
that are associated with the random feed into the combustor of individual waste elements
with large, and highly variable, sulfur contents. For these variable sources, activity data (i.e.,
fuel composition and feed rate) must be known to at least the temporal resolution required
for the emission estimates in order to minimize imprecision in the emission estimates.

For many sources, the main recognized source of variability in emissions is temporal
fluctuations in activity, which are usually greatest on a daily or weekly basis (e.g., weekday
activity rates tend to be higher than weekend rates). Some sources vary significantly
between years, particularly if emissions are driven by extreme events (e.g., chemical spills
and extreme meteorological conditions).

The uncertainty due to source variability should be quantified and minimized whenever
possible. Many times it is possible to attribute a portion of the emission uncertainty to a
given source of variation. However, it is never possible to eliminate all imprecision in
emission estimates. For example, it would not be feasible to obtain hourly use rates of dry
cleaning fluids at all dry cleaning establishments in an urban area. If an estimate of the
confidence interval (or other measure of dispersion) is available for a given parameter, that
portion of uncertainty that is attributable to that parameter can potentially be quantified.
However, other sources of variability may not be quantifiable; for example, source
production data may be available on an hourly or daily basis, but detailed fuel sulfur content
is known only as an annual average.

Good inventories will minimize the uncertainty due to temporal variability by ensuring that
input emission factors and activity data match the scale of the inventory. If factors or
activity have to be scaled up or down, adjustments must be made that account for temporal
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variability. Similarly, any other adjustments to the calculation to account for variability
should be performed.

2.2 PARAMETER UNCERTAINTY

Parameter uncertainty is caused by three types of errors: measurement errors, sampling
errors, and systematic errors (also called nonrandom error or bias). Examples of these types
of parameter errors are given in Table 4.2-2.

Measurement errors occur because of the imprecision of the instrument or method used to
measure the parameters of interest. Where emissions are measured directly, the measurement
error of a particular method is usually known; the U.S. Environmental Protection Agency
(EPA) typically uses the concept of relative accuracy to describe the performance of a
measurement method (or device) with respect to an EPA Reference Method.

A more common measurement error for area sources occurs due to misclassification. For
example, area source categories are frequently identified by SIC group, and the number of
employees or facilities in a particular SIC group are used as the activity data. However,
some SIC groups encompass a wide variety of industrial processes and activities, not all of
which are really sources of emissions. This issue can still be a problem even when a survey
is used to gather activity data within a SIC group if the sample design does not account for
subpopulations adequately. For example, different manufacturing processes may be used to
produce the same product; the ratio of emissions to employees may be different for these
processes. In addition, facilities are sometimes listed under an incorrect SIC or may have
more than one SIC. Any of these errors results in misclassification of data and adds to our
uncertainty about the emissions estimates.

Sampling error is an important factor when one or more of the parameters (i.e., activity,
factors, or emissions) are to be estimated from a sample of the population. While most
people recognize the importance of an adequate sample size, obtaining an adequate sample
size is often difficult. Furthermore, sample data are usually used to estimate the arithmetic
mean value from which the population mean is extrapolated. This approach assumes that the
underlying data are normally distributed--an assumption that is often violated (see Chapter 3,
Section 7, of this volume). If the underlying data are extremely skewed, a small sample size
can lead to very large errors in estimating means. Again, sampling error can be minimized if
proper statistical approaches are used, QA procedures are followed, and sample sizes are
adequate and properly obtained.

Systematic errors (bias) are the most problematic sources of parameter uncertainty because
they are the most difficult to detect and reduce. They occur primarily because of an inherent
flaw in the data-gathering process or in the assumptions used to estimate emissions. A
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TABLE 4.2-2

EXAMPLES OF PARAMETER UNCERTAINTY IN EMISSION SOURCE ESTIMATES

Source of
Parameter

Uncertainty Examples of Causes Ways to Minimize Effect

Measurement
errors in
activity data
and emission
factors

Inherent random error in measurement equipment
(e.g., selected anemometer is only accurate to the nearest
0.1 m/sec, air flow meter is accurate to only 10% of
measured flow, CEM has relative accuracy of 12%).

Monitoring equipment error tolerance too high.

Misclassification of activity data (e.g., wrong area source
SIC category used).

Use monitoring equipment adequate to gather data
required (i.e., do not use an instrument accurate to only
1.0 ppm if 0.1 ppm levels are required).

Establish and follow a data collection protocol including
performance QA measurements (i.e., field blanks,
duplicate samples or data entry).

Verify appropriateness of all activity and emission factor
data.

Sampling
(random) error
in activity data
and emission
factors

Inadequate sample size.

Errors in performance of the sampling (e.g., improper probe
placement in stack, misread dials, failure to follow the
sampling protocol).

Sampling equipment or source not in a stable or steady-state
mode (i.e., monitoring equipment not at a stable temperature,
source subject to load fluctuations, data collection during
atypical production periods).

Sampling protocol or sampling equipment inadequate to
produce required resolution in collected data.

Establish sample size required to meet analytical needs as
part of sampling protocol.

Establish and follow a monitoring (or sampling) protocol.

Audit all monitoring results to ensure compliance with
proper procedures and sampling protocols.

Perform a defined number of measurements as QA
measurements (i.e., field blanks, duplicate samples or
data entry).
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TABLE 4.2-2

CONTINUED

Source of
Parameter

Uncertainty Examples of Causes Ways to Minimize Effect

Systematic
errors (bias)

Inherent bias in a survey (e.g., only largest facilities are
surveyed and they do not reflect activities at smaller
facilities).

Misclassification of data (e.g., SIC group used does not
accurately define activities of facility).

Incorrect assumption (e.g., assuming 100% rule compliance
and ignoring rule effectiveness).

Improper calibration of monitoring equipment.

Sampling methodology improper for sources sampled.

Use of nonrepresentative meteorological data in estimation
procedures (e.g., temperature or wind speed data used are not
valid for the situation).

Develop and follow a sampling or inventory
development protocol.

Obtain external review of methods by a qualified expert.

Make sure that characteristics of the source population
are understood and accounted for in the sampling or
emission estimation methods.

Validate all assumptions.

Compare emission estimation or sampling results to
similar data from other studies.

Perform mass balance or other simple, common sense
checks to ensure reasonableness of data.
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common way that this happens is if the population to be sampled is not well defined, and a
sample (thought to be random) is actually nonrandom. This is a fairly common problem for
certain types of industries. For example, consider a local survey of solvent use by auto body
refinishing shops. One approach would be to develop a list of facilities from business
registration or other state/local business listings. However, this industry has a very large
number of "backyard" operations that are not identified in these official lists. Therefore, any
sample that did not recognize this fact would have systematic sampling errors.

As part of the emissions inventory development process, the goal is to reduce all known
sources of bias, both across and within sources. If a bias is known to exist, then effort
should be initiated to quantify and remove the bias. However, in practice this may be
difficult to accomplish because of a lack of resources, data, or other factors. For example,
the source testing used to develop the emission factors for a given class of sources could
potentially exclude a key source type. Because this key source type would not be
represented in the emission factor, the emission factor would potentially contain a known (or
suspected) bias. However, resources may not be available to perform the needed source
testing to develop a revised emission factor incorporating this key source type.
Consequently, a known bias would exist in the emission inventory but would not be readily
susceptible to elimination.

2.3 MODEL UNCERTAINTY

Model uncertainty applies to most emission estimates. In this context, a model is a
simplified representation of the processes leading to the emissions. Model uncertainty stems
from the inability to simulate the emission process completely due to the use of surrogate
variables, exclusion of variables from the computation process, and over-simplification of
emission process by the model. Table 4.2-3 presents examples of model uncertainty in
emission estimates.
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TABLE 4.2-3

EXAMPLES OF MODEL UNCERTAINTY IN SOURCE EMISSION ESTIMATES

Source of Model
Uncertainty Examples of Causes Ways to Minimize Effect

Use of surrogate
variables

Surrogate variable is an incomplete representation of the activity or
variable desired (e.g., factors in addition to heating degree days
[HDD] contribute to the demand for space heating).

Use of surrogates can mask underlying relationships between activity
data and emissions.

Enhance emission models to account for more
fundamental parameters.

Develop emission factors based on statistically
correlated surrogates.

Obtain site-specific data through statistically
valid surveys and with site units so that
surrogate data use can be minimized.

Model
simplification/
over-
simplification

Data parameterized (separated into classes) rather than used as
discrete values (e.g., speeds in motor vehicle emission factor models
input as discrete classes, traffic network input as links and nodes).

Reduction of a complex dependency to a single factor (e.g., emissions
of biogenic isoprene are a complicated function of the temperature
and the wavelength distribution of incoming sunlight at the leaf
surface but are typically modeled as a function of ambient
temperature and sunlight intensity at a single wavelength).

Emission model contains an invalid representation of the process
producing emissions (e.g., older versions of motor vehicle emission
factor models significantly underestimated evaporative VOC
emissions).

Verify the theoretical basis for all models.

Validate emissions models against independent
data.

Use continuous variable representations where
feasible and appropriate.
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Most emission estimates are the product of a series of quasi-independent parameters (i.e.,
emission factor, activity data, control factor, temporal adjustment) of the form

where:

(1)ERt p1 × p2 × . . . × pn

ERt = Emission rate for time t;
pi = Parameter used to estimates emissions, where i = 1, 2, . . ., n;
n = Number of parameters.

This same general equation, or linear model, applies to the simple case of an emission factor
(e.g., grams per kilogram combusted) times an activity datum (e.g., number of kilograms
combusted per day) as well as to the complex case where a model such as MOBILE5a or
BEIS are used (although nonlinear terms may be introduced as well).

There are a number of real-world problems and complexities associated with estimating
emissions uncertainty when the linear model is used to develop the emission inventory.
These problems include the inherent (and generally erroneous) assumption of independence
of the individual parameters, the complications inherent in obtaining temporal, spatial, and
speciated estimates of emissions from average values of emissions (e.g., obtaining gridded,
speciated, hourly emission estimates from annual county-wide emission estimates), the
limited amount of data that may be available for validation of estimates, and the difficulty
posed by temporal and spatial data dependencies in validating those estimates even when
data are available.

The use of surrogate variables is common in area source methods where population or the
number of employees are used as surrogates for emission activities. The uncertainty in using
these surrogates is especially high when emissions for a small region (i.e., county or smaller
area) are estimated using a national average factor. Local variations in activity are not
necessarily accounted for by population or employment. A common example is found in
large cities that have the corporate headquarters for an industry. The number of employees
may be high, but all of the manufacturing may be occurring in other areas.

Per capita emission factors are often an oversimplification of emission processes. For
example, the consumer/commercial solvent use factors are based on a national survey of the
solvent constituents of various consumer products. From this data set, the national average
consumption per person was calculated for various product groups (see Volume III,
Chapter 5 of the EIIP series). These factors may not account for solvent that is not emitted
because it is either disposed of (in containers) or washed down the drain; furthermore,
publicly owned treatment works (POTW) or landfill emissions may include these solvents,
and emissions may therefore be double-counted. The factors also do not reflect regional
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variation in product usage, so when used to calculate emissions on a county basis, they are
likely to over- or underestimate.

Point source emissions are also often based on the use of surrogates, although usually the
surrogate is very closely related to the emissive activity. Fuel consumption, for example, is a
surrogate for fuel combustion in a specific type of boiler. When an emission factor is used
to estimate point source emissions, the assumption is that the design, processes, and test
conditions of the original boiler (from which test data were derived) are good approximations
of the boiler to which the factor is being applied. The further this assumption is from
reality, the more uncertainty there is regarding the accuracy of the emission estimate.

This discussion of uncertainty in emissions inventories is by no means exhaustive. More
details are provided in the specific volumes and chapters for point, area, mobile, and
biogenic source categories. The EIIP has sought to encourage the reduction in uncertainty in
their selection of "preferred" methods wherever possible. Emission factors are usually not
the best choice if reducing uncertainty is the criterion; direct or indirect measurements,
surveys, and other methods targeting the specific source are preferred. Unfortunately, this is
not always practical. It is important that inventory preparers recognize the sources of
uncertainty, quantify it, and reduce it as much as is practical.
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QUALITATIVE UNCERTAINTY
ANALYSIS

The simplest approach for estimating uncertainty is to discuss all known and suspected
sources of bias and imprecision in the inventory. If possible, the direction (over- or
underestimates) of any biases and relative magnitude (e.g., factor of two, order of magnitude)
of the specific source of uncertainty should be stated. Sometimes standard deviations,
confidence limits, or other statistics are available for some of the variables used to develop
the inventory; if so, those statistics should be documented and their contribution to overall
accuracy of the estimates should be discussed.

The qualitative uncertainty assessment can be presented in narrative form. However, tables
provide a more systematic and concise method of summarizing the uncertainty. An example
of a qualitative uncertainty assessment is shown in Table 4.3-1. This table is part of a report
describing the results of the QA/QC procedures used during development of an inventory of
emissions from offshore oil production facilities (Steiner et al., 1994). Many of the key
sources of uncertainty shown are generally applicable to any inventory (e.g., survey
respondent expertise and applicability/usage components). It is more important to list and
discuss issues that are particularly relevant. For example, the authors of this study do a good
job of describing uncertainties in their survey data.

A table such as this one is a good method for presenting the results of a qualitative
assessment. One additional column that describes the direction (positive or negative) of any
biases or the relative magnitude of any imprecision (if these are known) would provide
additional valuable information to the assessment.

EIIP Volume VI 4.3-1
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TABLE 4.3-1

SUMMARY OF UNCERTAINTIES ASSOCIATED WITH THE OCS PRODUCTION-RELATED EMISSIONS INVENTORYa

Inventory
Component Basis of Uncertainty Description

Survey Survey Respondent
Expertise

Different levels of expertise of survey recipients could lead to incorrect or incomplete survey answers because of lack of
understanding or incorrect interpretation.

Unknown Answers Some of the equipment on the platforms is very old and equipment ratings cannot be read or the equipment has been modified and
manufacturers’ ratings no longer are applicable.

Incorrect Responses Most likely some respondents did not read the directions, which could lead to aberrant or incomplete answers. Many of the
problems corrected in the database were a result of incorrect units. Some of the flow rates in the survey were metered, others
were not metered, and survey respondent had to guess activity levels.

Data Entry Even though we used a double data entry system to enter the data to minimize typographical and data omission errors, some may
have occurred. In addition, some respondents had their survey responses typed onto forms by support staff, which could lead to
data entry errors.

Omitted Sources 15 percent of the companies operating platforms in the GOM contacted did not return the survey. Some of those companies may
have multiple platforms. All of the major corporations operating in the Gulf returned their surveys.

Some emissions sources (e.g., equipment) on the platforms may have been omitted because the survey respondent neglected to
include information necessary.

6 percent of the helicopter companies contacted did not return the survey. Only the smaller helicopter companies did not return
their survey.

26 percent of the vessel companies contacted did not return the survey. The companies that did not return the surveys are the
smaller operations.

Emissions
Methodology

Emission Factors Emission factors represent an average population. Gulf population may not be representative of the emission factor mix.

Fugitive Emissions An empirical formula derived from Pacific OCS facilities was used. Gulf OCS platforms were not exactly configured as those in
Pacific and product mix of oil and gas was different.

Applicability/Usage Even though the methodologies were reviewed for applicability, there is the possibility that a more applicable emissions
methodology exists or that the methodology was applied incorrectly because of an incorrect assumption.

a Source: Steiner et al., 1994. OCS = outer continental shelf. GOM = Gulf of Mexico.E
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4

SEMIQUANTITATIVE DATA QUALITY
RANKINGS

Semiquantitative ranking methodologies are relatively easy to implement and can be used
where detailed data on emissions are unavailable. A drawback of their use is that it can be
difficult to prevent logical inconsistencies (i.e., A > B, B > C, and C > A)because subjective
criteria are applied by different people at different times. Some older methods such as those
used forAP-42emission factors (U.S. EPA, 1995) rely on a ranking for each emission factor
from A (best) to E (worst). No numerical uncertainty values are associated with each rating.
Newer methods such as DARS (Beck et al., 1994) assign a numerical value to the quality of
the various components of the emissions inventory and allow numerical manipulation of the
uncertainty estimates of the system.

The DARS and other ranking methods are discussed below. Table 4.4-1 summarizes the
preferred and alternative methods for ranking systems.

TABLE 4.4-1

PREFERRED AND ALTERNATIVE METHODS FOR RANKING SYSTEMS

Preferred Provide DARS scores for all sources.

Alternative 1 Provide DARS scores for the largest sources (specify criteria used to
identify "largest").

Alternative 2 Use a letter grade or numerical scheme to rank data quality; provide
rules and rationale used to develop scores and make sure system is
used consistently throughout the inventory.

4.1 DARS

The Data Attribute Rating System or DARS is currently under evaluation by the EIIP’s
Quality Assurance Committee (QAC). EPA originally developed DARS to assist in
evaluating country-specific inventories of greenhouse gases. The system disaggregates
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emission estimates into emission factors and activity data, then assigns a numerical score to
each of these two components. Each score is based on what is known about the factor and
activity parameters, such as the specificity to the source category, spatial (geographical)
congruity, measurement of estimation techniques employed, and temporal congruity. The
resulting emission factor and activity data scores are combined to arrive at an overall
confidence rating for the inventory.

DARS defines certain classifying attributes that are believed to influence the accuracy,
appropriateness, and reliability of an emission factor or activity and derived emission
estimates. This approach is quantitative in that it uses numeric scores; however, scoring is
based on qualitative and often subjective assessments. DARS also disaggregates specific
attributes of the data and methods utilized in development of the inventory, thus providing
perspective on the reason for the overall rating.

The DARS approach, when applied systematically by inventory analysts, can be used to
provide a measure of the merits of one emission estimate relative to another. The proposed
inventory data rating system cannot guarantee that an emission inventory with a higher
overall rating is of better quality, or more accurate, or closer to the true value. The
inventory with the higher overall rating islikely to be a better estimate, given the techniques
and methodologies employed in its development.

An example of DARS scores for the architectural surface coatings area source category is
shown in Table 4.4-2. Two alternative methods were used to estimate emissions from an
urban area; one was based on a survey of paint distributors (conducted several years prior to
the inventory) in the area, the other used a national per capita factor based on data from
within one year of the inventory year. The more labor-intensive method gives a much higher
overall DARS score. More information on considerations in using DARS scores for paints
and coatings emission sources is presented in Appendix F.

EIIP members have recognized the potential utility of DARS for inventories at all levels.
Among the proposed uses of DARS are:

To identify the weakest areas of an inventory for further research and
improvement;

To use as one of several methods to quickly compare different inventories;

To rank alternative emission estimation methods (the EIIP Area and Point
Source Committees have used DARS as one of several tools to select the best
method);

To set DQO targets during the inventory planning stage; and
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TABLE 4.4-2

DARS SCORES FOR ARCHITECTURAL SURFACE COATING EMISSIONS ESTIMATED
BY TWO DIFFERENT METHODS

Attribute Factor Activity Emissions

Local Survey

Measurement/Method 0.7 0.9 0.63

Source Specificity 1.0 1.0 1.00

Spatial 1.0 1.0 1.00

Temporal 0.7 1.0 0.70

Composite 0.85 0.975 0.83

Per Capita Factor

Measurement/Method 0.3 0.4 0.12

Source Specificity 1.0 0.3 0.30

Spatial 0.3 0.3 0.09

Temporal 0.7 1.0 0.70

Composite 0.575 0.5 0.30
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To provide a means of ranking inventories.

A more thorough discussion of the recommended EIIP approach for DARS is provided in
Appendix F of this volume.

4.2 AP-42 EMISSION FACTOR RATING SYSTEM

The U.S. EPA’sCompilation of Air Pollutant Emission Factors, AP-42, is the primary
reference for emission factors in the United States (U.S. EPA, 1995). EachAP-42emission
factor is given a rating of A through E, with A being the best. A factor’s rating is a general
indication of the reliability, or robustness, of that factor. This rating is assigned using expert
judgement. That judgement is based on the estimated reliability of the methods used to
develop the factor, and on both the amount and the representative characteristics of the data.

In general, emission factors based on many observations, or on more widely accepted test
procedures, are assigned higher rankings. Conversely, a factor based on a single observation
of questionable quality, or one extrapolated from another factor for a similar process, is
usually rated much lower. Because emission factors can be based on source tests, modeling,
mass balance, or other information, factor ratings can vary greatly. In addition, there is a
wide variation in the amount of QA to which each factor has been subjected.

Because the ratings do not consider the inherent scatter among the data used to calculate
factors, the ratings do not imply statistical error bounds or confidence intervals about each
emission factor. At most, a rating should be considered anindicator of the accuracy and
precision of a given factor. This indicator is largely a reflection of the professional
judgement ofAP-42authors and reviewers concerning the reliability of any estimates derived
with these factors.

Two steps are involved in factor rating determination. The first step is an appraisal of data
quality or the reliability of the basic emission data that will be used to develop the factor.
The second step is an appraisal of the ability of the factor to stand as a national annual
average emission factor for that source activity. TheAP-42 rating system for the quality of
the test data consists of four categories and is presented in Table 4.4-3.

The quality rating ofAP-42data helps identify satisfactory data, even when it is not possible
to extract a factor representative of a typical source in the category from those data. For
example, the data from a given test may be good enough for a data quality rating of "A," but
the test may be for a unique feed material, or the production specifications may be either
more or less stringent than at the typical facility.
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The AP-42emission factor rating is an overall assessment of how good a factor is, based on

TABLE 4.4-3

AP-42 RATING SYSTEM FOR EMISSIONS TEST DATA

Rating Description

A Tests are performed by a sound methodology and are reported in enough
detail for adequate validation.

B Tests are performed by a generally sound methodology, but lacking enough
detail for adequate validation.

C Tests are based on an unproven or new methodology, or are lacking a
significant amount of background information.

D Tests are based on a generally unacceptable method, but the method may
provide an order-of-magnitude value for the source.

both the quality of the test(s) or information that is the source of the factor and on how well
the factor represents the emission source. Higher ratings are for factors based on many
unbiased observations, or on widely accepted test procedures. For example, a factor based
on 10 or more source tests on different randomly selected plants would likely be assigned an
"A" rating if all tests are conducted using a single valid reference measurement method.
Likewise, a single observation based on questionable methods of testing would be assigned
an "E", and a factor extrapolated from higher-rated factors for similar processes would be
assigned a "D" or an "E." A description of theAP-42emission factor quality ratings is given
in Table 4.4-4.

The AP-42emission factor scores are of some value as indicators of the quality of emissions
estimates. At best, they rate the quality of the original data as applied to estimates for that
original point source. However, when applied to other sources or to groups of sources (i.e.,
area sources) theAP-42 factor score is less meaningful because it does not consider how
similar the original source and the modeled source(s) are, and it does not address the quality
of the activity data at all.

4.3 OTHER GRADING SYSTEMS

A review of inventory quality rating systems was recently completed for the EPA (Saeger,
1994). Several systems similar to theAP-42system are described.
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TABLE 4.4-4

AP-42 RATING SYSTEM FOR EMISSION FACTORSa

Ranking Quality Rating Discussion

A Excellent Factor is developed from A- and B-rated source test data
taken from many randomly chosen facilities in the industry
population. The source category population is sufficiently
specific to minimize variability.

B Above Average Factor is developed from A- or B-rated test data from a
"reasonable number" of facilities. Although no specific bias
is evident, it is not clear if the facilities tested represent a
random sample of the industry. As with an A rating, the
source category population is sufficiently specific to
minimize variability.

C Average Factor is developed from A-, B-, and/or C-rated test data
from a reasonable number of facilities. Although no specific
bias is evident, it is not clear if the facilities tested represent
a random sample of the industry. As with the A rating, the
source category population is sufficiently specific to
minimize variability.

D Below Average Factor is developed from A-, B-, and/or C-rated test data
from a small number of facilities, and there may be reason to
suspect that these facilities do not represent a random sample
of the industry. There also may be evidence of variability
within the source population.

E Poor Factor is developed from C- and D-rated test data, and there
may be reason to suspect that the facilities tested do not
represent a random sample of the industry. There also may
be evidence of variability within the source category
population.

a Source: U.S. EPA, 1995.
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A method used in Great Britain is based on letter ratings assigned to both emission factors
and the activity data. The combined ratings are then reduced to a single overall score
following an established protocol. The emission factor criteria for the letter scores are
similar to those applied in the U.S. EPA’s approach and scores for the activity data are based
largely on the origin of the data. Published data either by a government agency or through
an industry trade association are assigned C ratings and extrapolated data based on a
surrogate would receive an E rating.

The Intergovernmental Panel on Climate Change (IPCC) uses a rating scheme in its
guidelines for reporting of greenhouse gas emissions. The IPCC system incorporates an
assessment of completeness and of overall data quality in a code. Table 4.4-5 shows the
codes used for each of four characteristics. These codes are entered in an inventory review
table (such as the one shown in Figure 2.4-1, Chapter 2 of this volume).

4.4 GEIA RELIABILITY INDEX

The Global Emissions Inventory Activity (GEIA) group is a consortium of research
institutions that is attempting to develop common data sets for use in developing global
emissions inventories. Data are supplied to this group from many different sources. The
person supplying the data is asked to categorize it into one of three reliability categories of
<50 percent, 50-100 percent, or >100 percent that represent the estimated error in the data.

This categorization relies entirely in the subjective judgements of the data originator. If a
system like this is used, the inventory developer should clearly define each category and
provide a rationale for the assignment of each category. This type of approach may be most
useful as a relative indicator for categories within a given inventory (particularly if used in
combination with a qualitative assessment as described above). Without some
standardization of the reliability category definitions, this method is not suitable for
comparisons between inventories.
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TABLE 4.4-5

DATA QUALITY CODES RECOMMENDED BY THE IPCCa

Estimates Quality Documentation Disaggregation

Code Meaning Code Meaning Code Meaning Code Meaning

Part Partly estimated H High confidence in
estimation

H High (all background
information included)

1 Total emissions
estimated

All Full estimate of all
possible sources

M Medium confidence in
estimation

M Medium (some
background information
included)

2 Sectoral split

NE Not estimated L Low confidence in
estimation

L Low (only emission
estimates included)

3 Subsectoral split

IE Estimated but included
elsewhere

NO Not occurring

NA Not applicable

a Source: Intergovernmental Panel on Climate Change (IPCC), 1995.
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5

QUANTITATIVE UNCERTAINTY
ANALYSIS

This section describes several methods for generating statistically based uncertainty estimates.
They differ from previous methods in that they give quantitative, or numerical, estimates of
the error associated with emission estimates. Table 4.5-1 summarizes the preferred and
alternative methods for conducting quantitative uncertainty analysis. As discussed in the
introduction to this chapter, the intended uses of the emissions data should be considered
before spending significant resources on quantifying the uncertainty associated with the
estimates.

5.1 EXPERT ESTIMATION METHOD

TABLE 4.5-1

PREFERRED AND ALTERNATIVE METHODS FOR QUANTIFYING UNCERTAINTY

Preferred Use expert judgment (based on as much data as are available) to
estimate standard deviation (or coefficient of variation) and
distribution for key variables for each source type or category.
Conduct probabilistic modeling (e.g., Monte Carlo), accounting for
dependencies between variables.

Alternative 1 Develop standard deviations (as above), assume independence, and
use error propagation to estimate uncertainty limits.

Alternative 2 Use Delphi Method or other survey of experts to generate upper and
lower bounds in estimates.

In general, information on the distributional nature of emissions data is required for a
quantitative analysis. These data include the type of distribution that best fits the data, and
values of the key distribution parameters (i.e., mean or median and variance) are generally
unavailable. Typically, no information is available to define the distribution of activity data
as being normal, lognormal, or some other distribution, and there are no estimates of mean or
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standard deviation of the parameter of concern. The most readily available source of data for
use in emission uncertainty analysis is "expert judgement." Consequently, experts are asked
to estimate key parameters associated with an emission inventory such as the qualitative
lower and upper bounds of an emission estimate or the shape of a particular parameter
distribution.

One approach is the highly formalized Delphi method (Linstene and Turoff, 1975) in which
the opinion of a panel of experts working separately but with regular feedback converges to a
single answer. The Delphi approach does not require an assumption of either independence
or distribution of the underlying emissions data and is a very powerful technique when used
properly and is focused on the "right" question. However, its capability is limited by the
quality of the "experts" selected and the care with which the analysis protocol is followed.
The work at the South Coast Air Quality Management District (SCAQMD, 1982) is an
example of application of a simple Delphi technique to assess uncertainty in a large-scale
inventory.

Expert judgement outside a formal Delphi framework is also used to estimate emissions
uncertainty. In these methods, which can be relatively simplistic to highly structured, one or
more experts make judgements as to the values of specific distributional parameters for a
number of sources. For example, Horie (1988) used graphical techniques to estimate
confidence limits once estimates of upper and lower limits of emissions were developed
through expert judgement. Dickson and Hobbs (1989) applied three separate methods,
including Horie’s, to estimate the confidence limits for a number of source categories after
developing estimates of the uncertainty parameters based upon questionnaires filled out by a
panel of emission inventory experts.

Table 4.5-2 presents a portion of the results of Dickson and Hobbs. This table presents
alternative estimates of uncertainty in VOC emissions in the San Joaquin Valley for 1985
using the lognormal method of Mangat et al. (1984), the probability method of Horie (1988),
and the error propagation method as implemented by Benkovitz (1985), which is discussed in
the next section. The estimates of uncertainty for emission factors and activity data for each
individual source type were obtained through a polling of experts. Once these data were
compiled and processed, a simple Monte Carlo simulation was used to estimate uncertainty
in the entire inventory for the Mangat and Horie approaches. For the error propagation
method, estimates of overall inventory uncertainty were obtained directly through error
propagation. For most categories (only four are presented in the table), the lognormal and
error propagation methods yield similar results with slightly larger differences produced
using the probability method.

All three of these methods require the assumptions of independence of the activity data and
emission factors, assumptions that are not often met. In addition, each method makes the
explicit assumption of normality (or lognormality) of the emissions data. A consequence of
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TABLE 4.5-2

COMPARISON OF VOC EMISSION UNCERTAINTY ESTIMATES DERIVED USING THREE ALTERNATIVE
UNCERTAINTY ESTIMATION METHODSa

VOC Area Source
Category

Median Emission Estimate
(Med)

90% Upper Confidence Limit
(UCL90)

Relative Percentage Differenceb

[(UCL90-Med)/Med*100]

LN P EP LN P EP LN P EP

On-Road Motor
Vehicles

30 29 29 35 41 36 17 41 22

Surface Coating 9.2 9.6 9.1 11 16 11 18 63 18

Pesticide Use 21 22 21 25 27 26 19 25 22

Oil Production 150 150 140 200 190 200 33 27 37

All Sources 210 210 200 260 260 260 23 21 27

a Source: Dickson and Hobbs, 1989. Emissions are for 1985 for the San Joaquin Valley and units are in thousands of tons per year.
b Computed prior to rounding median and upper confidence limits to two significant figures.

LN Lognormal Method of Mangat et al., 1984.
P Probability Method of Horie, 1988.
EP Error Propagation Method, Benkovitz, 1985.
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a violation of any of these basic assumptions is that the uncertainty estimates that result are
typically biased low. The fact that emissions data often violate these assumptions is a major
weakness in most simple emission uncertainty estimation methodologies such as the three
listed in Table 4.5-2. A strength of these methods, however, is their relatively low
implementation cost when compared to the next two methods discussed in this section. In
many circumstances, reasonable estimates of uncertainty for a multicounty or regional
inventory can be developed for less than 2,000 hours of effort.

Note that these methods are different from the GEIA reliability index (and other ranking
systems) discussed in the previous section. While all rely on expert judgement, the methods
described in this section rely on sampling expert opinions and using that data to develop
statistical indicators.

5.2 PROPAGATION OF ERROR METHOD

Error propagation methods follow traditional statistical methodology to estimate the
composite error introduced by the joint action of a number of individual factors each with
their own uncertainty. These error propagation methods are based upon the twin assumptions
that:

Emission estimates are equal to the product of a series of parameters; and

Each of the parameters is independent (i.e., no temporal or spatial correlations
among the parameters).

A good example of an error propagation analysis used to estimate emissions uncertainty in a
large-scale emissions inventory is the National Acid Precipitation Assessment Program
(NAPAP, 1991). For NAPAP, Benkovitz (1985) used a Taylor’s series expansion of the
equation describing the variance of a series of products to develop an analytic closed-form to
an otherwise intractable problem. In particular, the assumption of independence allows the
variance of multiplicative products to be expressed in terms of the individual variances.
There is general agreement that the uncertainty in the NAPAP inventory is underestimated, in
part because of the incorrect assumption of independence of the emission parameters used in
the NAPAP error propagation analysis (EPA, 1986).

The IPCC proposes that this approach be used only when the ranges in the emission factor
and uncertainty do not exceed more than 60 percent above or below the mean emission
estimate. The uncertainty in each component (i.e., the factor and activity) is first established
using classical statistical analysis (Chapter 3, Section 7 of this volume), probabilistic
modeling (described in next section), or the formal expert assessment methods (described in
the previous section). Figure 4.5-1 presents an excerpt from the IPCC guidelines (IPCC,
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FIGURE 4.5-1. RECOMMENDED IPCC PROCEDURES FOR QUANTIFYING
UNCERTAINTY (SOURCE: IPCC, 1995)
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FIGURE 4.5-1. CONTINUED

EIIP Volume VI4.5-6



7/12/96 CHAPTER 4 - EVALUATING UNCERTAINTY

FIGURE 4.5-1. CONTINUED
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1995). [Note that the nomenclature used in the IPCC example is not always consistent with
EIIP terms. In particular, "point estimate" refers to the statistical concept of a single number
that may be an average or an engineering judgement; it does not refer to "point sources" or
single facilities.]

An example of the input data used in an error propagation analysis for the Grand Canyon
Visibility Transport Commission emissions inventory is given in Table 4.5-3 (Balentine et
al., 1994). In this study, Balentine et al. used expert judgement to estimate emissions
uncertainty for all significant source classes and then developed refined estimates of
uncertainty for nine source categories using error propagation methodology. Emissions from
each source category were assumed to be a multiplicative function of the underlying emission
parameters. For each of the nine categories for which refined uncertainty estimates were
made, estimates of the coefficient of variation of each emission parameter contributing to the
uncertainties were developed based upon the analysis of surrogate parameters and expert
judgement. Including data acquisition (but not inventory development), this study required
less than 300 staff hours to complete.

For the example source category given in Table 4.5-3 (industrial and commercial fuel
combustion), the emission estimate, and hence uncertainty, was assumed to be a function of
the number of sources, the distillate oil demand, the average sulfur content, and the
variability in theAP-42emission factor. Application of the error propagation method with
the data in Table 4.5-3 yields an overall composite coefficient of variation of approximately
40 percent, estimated as the square root of the sum of the square of the individual
coefficients of variation. Again, this method requires the generally poorly met assumptions
of independence and normal (lognormal) distribution of the individual emission parameters.

5.3 DIRECT SIMULATION METHOD

Direct simulation methods are statistical methods in which the uncertainty and confidence
limits in emission estimates are directly computed using statistical procedures such as Monte
Carlo (Freeman et al., 1986), bootstrap and related resampling techniques (Efron and
Tibshirani, 1991), and Latin hypercube approaches (Iman and Helton, 1988). A major
benefit of these statistical procedures is that the lack of independence in emission parameters
is not a limitation. If set up and performed properly, the analysis methodology explicitly
accounts for any dependencies as part of the statistical formulation of the problem.

The common Monte Carlo technique is a powerful direct simulation method. Freeman et al.
(1986) applied this technique to evaluate uncertainty in the input parameters, including
emissions, in an air quality model. Environment Canada (1994) applied the methodology to
estimate uncertainty in greenhouse gas emissions for Canada. Table 4.5-4 presents the
Environment Canada Monte Carlo results for carbon dioxide (CO2) emissions in Canada.
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The estimated uncertainty in emissions in individual source categories varied from 5 percent

TABLE 4.5-3

ESTIMATED COEFFICIENT OF VARIATION FOR PARAMETERS USED IN ESTIMATING
SO2 EMISSIONS FROM INDUSTRIAL AND COMMERCIAL SOURCESa

Parameter Source Discussion
Coefficient of
Variation (%)

Number of industrial and
commercial sources

Dickson et al., 1992 Variation in day-specific
emissions from annual day
emissions for 33 facilities in
Wisconsin.

15

Distillate oil demand Oil and Gas Journal,
1992, 1993, and 1994

1992-1994 quarterly
variability in
nontransportation distillate
fuel demand.

5

Distillate oil average sulfur
content

El-Wakil, 1984 Average sulfur content for
No. 2 and No. 6 fuel oils.

25

Emission factor variability Assumption based on
AP-42, Table 1.3-1;
EPA, 1985

AP-42uncertainty in emission
factor given as an "A" rating.

20

a Source: Balentine et al., 1994.

for diesel fuel combustion to 40 percent for coal combustion. Because the Environment
Canada study made the assumption of independence between parameters, the resultant
uncertainty estimates should be considered lower limits.

One limitation of the Monte Carlo approach is that a distribution type and distribution values
for each emission parameter must be specified. Typically, expert judgement is required to
make some or all the estimates of distribution type and parameters. A second limitation (but
also a strength because it gets around the assumption of independence) is that all underlying
dependencies between the various parameters must be accounted for when formulating the
model. These dependencies can be taken into account during randomization of each
parameter because the same random number can be used to estimate multiple parameters that
are correlated (e.g., if population is a factor in multiple emission parameters, the same
random number can be used to estimate each factor that is dependent on population rather
than allowing use of independent random numbers).

The Latin hypercube methodology (Iman and Helton, 1988) has evolved from the Latin
square methodology (Cox, 1958) commonly used for planning and analyzing field
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TABLE 4.5-4

ESTIMATES OF UNCERTAINTY OF CO2 EMISSIONS IN CANADA
PRELIMINARY 1990 CO2 ESTIMATES IN KILOTONNESa

Source Group

At 95% Confidence Level

Range of Emissions
(Rounded) From/To Range Width

Overall Uncertainty
(± %)

Industrial Processes
Cement Process Only
Lime & Other
Inorganics
Stripped Natural Gas
Non Energy Use

4,700/6,000
1,900/2,600
5,100/7,300
9,900/18,400

1,300
700

1,800
8,500

(12)
(15)
(18)
(30)

Subtotal 23,350/32,254 8,903 (16)

Fuel Combustion
Power Generation
Residential
Commercial
Industrial/Steam
Agriculture
Public Administration
Refinery Use
Oil & Gas Production
Pipeline
Coal
Miscellaneous

89,000/99,000
38,000/43,000
22,500/25,500
72,500/85,500
2,280/2,680
1,900/2,200

12,500/18,700
22,700/34,000
6,000/7,400

240/560
200/500

10,000
5,000
3,000

13,000
400
300

6,200
11,300
1,400

320
300

(5)
(6)
(6)
(8)
(8)
(8)

(20)
(20)
(10)
(40)

--

Subtotal 282,409/304,074 21,666 (4)

Transportation
Gasoline
Jet Fuels
Diesel
Natural Gas & Propane

73,900/81,600
11,900/14,500
44,900/49,700
1,500/1,900

7,700
2,600
4,800

400

(5)
(10)
(5)

(10)

Subtotal 135,024/144,540 9,515 (3.5)

Overall Total 448,185/473,467 25,283 (3)

a Source: Table 4.2.1-1 in Environment Canada, 1994.
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measurements. A typical application of the Latin square approach would be an agricultural
experiment examining the role of application ofn alternative pesticides tom plant varieties
in an effort to determine the combination that maximizes crop yield.

In the Latin hypercube approach, the methodology is expanded beyond the simple two-
dimensional relationship to higher dimensions with multiple parameters and potential
interactions. In an example involving emission estimates, the data set may consist of stack
test measurements of emissions from industrial boilers and three of the variables included are
the boiler type, load, and control device. Using the Latin hypercube approach, the internal
relationship between load, boiler type, and control device would be approximated by the
various random samples selected from the data set. This approach allows one to estimate
directly the uncertainty of the parameter of interest (i.e., emission rate) as a function of the
causative factors examined.

The numerical method developed by Oden and Benkovitz (1990) allows one to estimate
uncertainty in the typical situation in which autocorrelations and covariances that occur in the
parameters responsible for producing emissions. Using their methodology, it is possible to
estimate the uncertainty accounting for the lack of independence between the parameters and
to determine what this lack of independence contributes to the overall uncertainty.

Resampling methodologies such as the bootstrap method (Efron and Tibshirani, 1991)
involve performing random sampling (with replacement) from a data set in order to estimate
some statistical parameter such as the standard error or variance. For a small data set, a
direct computation of the parameter of interest can be highly uncertain given the small
sample size or may not even be possible because there is no simple formula with which to
compute the value. However, in bootstrap and other resampling methods, resampling with
replacement both increases the effective size of the data set and allows direct estimation of
parameters of interest. While there are difficulties in applying resampling techniques to
emissions data because they are temporally correlated, recent work by Carlstein (1992) has
allowed bootstrap techniques to be applied in situations with temporally correlated data.

The major drawback of the direct simulation methodologies is the computationally intensive
nature of the techniques. However, as computing costs decrease with the advent of
increasingly more powerful desktop computers, this limitation is becoming less important as
a selection criteria for an uncertainty estimation methodology. Because of the complexity of
the statistical analyses required, staff members with advanced degrees in statistics are
typically involved in studies using direction simulation methods to estimate uncertainty.
Also, the level of effort required can approach (or exceed) 1,000 staff hours depending upon
the complexity of the analysis and the data collection required.
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5.4 OTHER METHODS

In addition to the above methods, direct and indirect field measurement, receptor modeling,
and inverse air quality modeling can be used to produce estimates of uncertainty (or relative
uncertainty) in emission inventories. However, such methods can provide significantly more
information than estimates of uncertainty. Each can produce emission estimates completely
independent of standard emission computation methods. Typically, these other methods are
very labor and data intensive, and can easily require 1,000 staff hours or more to collect the
required data and perform the analysis.

Because these emission estimates are independent, they can be used as an independent
verification of the emission estimates. This potential role in validating emission estimates is
perhaps the most important use of information resulting from application of these methods.
A detailed discussion of each method is given in Chapter 3, Section 9 of this volume.
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